EMC TEST REPORT

EN 55015: 2013/A1:2015 EN 61547: 2009 EN 61000-3-2: 2014 EN 61000-3-3: 2013 MEASUREMENT AND TEST REPORT For

Guangzhou BaoLun Electronics Co., Ltd. NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

Models: TL-YSD0-01,TL-YSD0-02,TL-YSD0-03,TL-YSD0-04,TL-YSD0-05,TL-YSD0-06, TL-YSD0-07,TL-YSD0-08,TL-YSA0-01,TL-YSA0-02,TL-YSA0-03,TL-YSA0-04, TL-YSB0-01,TL-YSB0-02,TL-YSC1-01

January 25, 2019

This Report Con	cerns:	Equipment Type:
🛛 Original Repo	rt	Stage Luminaire
Test By:	Eric/ FN,C	A HANNE CONTRACT
Report Number:	TH19AR-142E	W HE A
Test Date:	January 18-25, 201	9 BUILD
Reviewed By:	Prince /	
Approved By:	Prince /	2307 0 12°
Prepared By:	Shenzhen Tian Hai	i Test Technology Co.,Ltd.
	4F, A3 BLDG, The	Silicon Valley Power intelligent terminal
	Co.	nlan street, Longhua district, Shenzhen
4	Tel: +86-755-86615	100
A	Fax: +86-755-86615	5105

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen Tian Hai Test Technology Co.,Ltd.

J 1 1 7	S A	N.	L	N	Y	\sim	
TABLE OF CONTENTS			8		L		
- GENERAL INFORMATION							
1.1 PRODUCT DESCRIPTION FOR EQUIPM							
1.2 TEST STANDARDS							
1.3 TEST SUMMARY							
1.4 Test Methodology		A	×	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1.5 TEST EQUIPMENT LIST AND DETAILS		- Y -					
- SYSTEM TEST CONFIGURAT	ION		\sim		5		
2.1 JUSTIFICATION		S		~			N
2.2 EUT EXERCISE SOFTWARE							
2.3 SPECIAL ACCESSORIES	~					47	
2.4 Equipment Modifications					<u></u>	<u></u>	
2.5 CONFIGURATION OF TEST SYSTEM							
2.6 TEST SETUP DIAGRAM							
- DISTURBANCE VOLTAGE AT	THE MAD	S TERMINA	LS I	X	Z		X
3.1 MEASUREMENT UNCERTAINTY							
3.2 LIMIT OF DISTURBANCE VOLTAGE A							
3.3 EUT SETUP							
3.4 INSTRUMENTS SETUP							
3.5 TEST PROCEDURE							
3.6 SUMMARY OF TEST RESULTS							
3.7 DISTURBANCE VOLTAGE TEST DATA							
3.8 TEST RESULT							
- RADIATED DISTURBANCES			I.			Ľ	N
4.1 MEASUREMENT UNCERTAINTY							
4.2 LIMIT OF RADIATED DISTURBANCES	· /						
4.3 EUT SETUP 4.4 TEST RECEIVER SETUP							
4.4 TEST RECEIVER SETUP							
4.5 TEST PROCEDURE							
4.7 RADIATED DISTURBANCES TEST RES							
4.8 TEST RESULT							
RADIATED DISTURBANCES TEST DATA							
RADIATED DISTURBANCES TEST DATA							
					~		
- HARMONIC CURRENT TEST							
5.1 APPLICATION OF HARMONIC CURREN		······		<i>G</i>			
5.2 MEASUREMENT DATA							
5.3 TEST RESULTS							
- VOLTAGE FLUCTUATIONS A	ND FLICK	ER TEST (EN	61000-3-3)		5	\geq	
6.1 APPLICATION OF VOLTAGE FLUCTUA	TIONS AND EL	ICKED TEST	01000 0 0).	Z	2	X	2
6.1 APPLICATION OF VOLTAGE FLUCTUA 6.2 MEASUREMENT DATA							
6.3 TEST RESULTS							
- IMMUNITY MEASUREMENT							
7.1 Electrostatic Discharge Test S	YSTEM		7		,47		
7.2 RADIATED SUSCEPTIBILITY TEST SYS							
7.3 ELECTRICAL FAST TRANSIENT/BURST	Γ ΙΜΜUΝΙΤΥ Τ	EST SYSTEM		47	<u></u>	<u>k</u> i	
7.4 SURGE IMMUNITY TEST SYSTEM					\geq		
7.5 Conducted Susceptibility Test S							
7.6 POWER FREQUENCY MAGNETIC FIEL	d Immunity T	EST SYSTEM		\sim		3	\sim
7.7 VOLTAGE DIPS, SHORT INTERRUPTIO							
7.8 Equipment Test Table							
7.9 INSTRUMENT CALIBRATION					Ś		
100	K	14	A	X	1	~	14
67.7							

Report No.; TH19AR-142E

Page 2 of 32

EN 55015:2013 Report

4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

<u> </u>	Solution (1997)	\sim	5	
8- IMMUNITY TEST PROCEDURES				
8.1 EUT AND CABLE PLACEMENT	~~~			
8.2 APPLICATION OF ELECTROSTATIC DISCHARGE IMM	IUNITY TEST			
8.3 APPLICATION OF RADIATED SUSCEPTIBILITY TEST	<u> </u>		<u>, </u>	
8.4 APPLICATION OF ELECTRICAL FAST TRANSIENT/B	urst Immunity Test		27	
8.5 APPLICATION OF SURGE IMMUNITY TEST				
8.6 APPLICATION OF CONDUCTED SUSCEPTIBILITY TE				
8.7 APPLICATION OF POWER FREQUENCY MAGNETIC I				
8.8 APPLICATION OF VOLTAGE DIPS, SHORT INTERRUI	PTIONS IMMUNITY TESTS	<u> </u>	2	2
8.9 DEVIATIONS FROM THE STANDARD				
9 - TEST DATA	~			22
9.1 Electrostatic Discharge Immunity Test (IEC				
9.2 RADIATED SUSCEPTIBILITY TEST (IEC 61000-4-3)				
9.3 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY	TEST (IEC 61000-4-4)	× 4		2
9 4 SURGE IMMUNITY TEST (IEC 61000-4-5)	24 2	1 2	\leq	2.4
9.5 CONDUCTED SUSCEPTIBILITY TEST (IEC 61000-4-	6)		X	
9.6 POWER FREQUENCY MAGNETIC FIELD IMMUNITY	TEST (IEC 61000-4-8)	\sim	~	
9.7 VOLTAGE DIPS, SHORT INTERRUPTIONS IMMUNITY				
10 - TEST RESULTS	·····		<u></u>	
10.1 IEC 61000-4-2 Electrostatic Discharge Imm	IUNITY TEST CONFIGURA	TION	42	
10.2 IEC 61000-4-3 RADIATED SUSCEPTIBILITY TEST				
10.3 IEC 61000-4-4 Electrical Fast Transient/Bu				
10.4 IEC 61000-4-5 Surge Immunity Test Configu	RATION		<u></u>	
10.5 IEC 61000-4-6 CONDUCTED SUSCEPTIBILITY TES				
10.6 IEC 61000-4-8 Frequency Magnetic Field Im	IMUNITY TEST CONFIGUE	RATION		
10.7 IEC 61000-4-11 VOLTAGE DIPS, SHORT INTERRU	JPTIONS IMMUNITY TEST	S CONFIGURATION.	N. S.	
APPENDIX A - PRODUCT LABELING	~			
CE MARKING LABEL SPECIFICATION				3
PROPOSED LABEL LOCATION ON EUT				
APPENDIX B - EUT PHOTOGRAPHS		2	L.	
	I I			Ż
APPENDIX C - TEST SETUP PHOTOGRAPH	IS			

Report No.; TH19AR-142E

Page 3 of 32

EN 55015:2013 Report

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:

Address of applicant:

Manufacturer:

Guangzhou BaoLun Electronics Co., Ltd.

Guangzhou BaoLun Electronics Co., Ltd.

Address of Manufacturer:

NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

NO.1 Building B Block Zhongcun Street Panyu Guangzhou China

General Description of E.U.T

EUT Description:

Stage Luminaire

Model No:

TL-YSD0-01,TL-YSD0-02,TL-YSD0-03,TL-YSD0-04,TL-YSD0-05, TL-YSD0-06,TL-YSD0-07,TL-YSD0-08,TL-YSA0-01,TL-YSA0-02, TL-YSA0-03,TL-YSA0-04,TL-YSB0-01,TL-YSB0-02,TL-YSC1-01

Rating:

Trade Mark:

Note:

ITC All models share the same circuit diagram ,just different size,power and

brightness.All test performance on:TL-YSD0-02.

AC100 -240V, 50/60Hz, 0.9A, 200W

* The test data gathered are from the production sample provided by the manufacturer. Supplementary Models share same circuit and with different appearance.

1.2 Test Standards

The following Declaration of Conformity report of EUT is prepared in accordance with

EN 55015: 2013/A1:2015

<u>EN 61547: 2009</u>

EN 61000-3-2:2014

EN 61000-3-3:2013

The objective of the manufacturer is to demonstrate compliance with the described standards above.

Report No.; TH19AR-142E

Page 4 of 32

EN 55015:2013 Report

1.3 Test Summary

For the EUT described above. The standards used were EN 55015 for Emissions & EN 61547 for Immunity. Table 1 : Tests Carried Out Under EN 55015; 2013/A1:2015

Standard	Test Items		Status
H.	Disturbance Voltage at The Mains Terminals (0.009~30MHz)	71	
EN 55015: 2013/A1:2015	Magnetic Field Emission (0.009~30MHz)		х
	Radiated Disturbances (30MHz To 300MHz)	ć	\checkmark
A Contraction that the	e test is applicable	6	

Indicates that the test is applicable Indicates that the test is not applicable

Table 2 : Tests Carried Out Under EN 61000-3-2: 2014 / EN 61000-3-3: 2013

Standard	Test Items	Status
EN 61000-3-2: 2014	Harmonic Current Test	
EN 61000-3-3: 2013	Voltage Fluctuations and Flicker Test	SV
1 Indicates that the test is applied	A LA X	14

Indicates that the test is applicable Indicates that the test is not applicable

Table 3 : Tests Carried Out Under EN 61547: 2009

Standard	Test Items	Status
EN61000-4-2:2009	Electrostatic discharge Immunity	V.X
EN 61000-4-3:2006+A1:2008 +A2:2010	Radiated Susceptibility (80MHz to 1GHz)	1/4 A
EN61000-4-4:2012	Electrical Fast Transient/Burst Immunity	\checkmark
EN61000-4-5:2014	Surge Immunity	X
EN61000-4-6:2014/AC:2015	Conducted Susceptibility (150kHz to 80MHz)	LA .
EN61000-4-8:2010	Power Frequency Magnetic Field Immunity (50/60Hz)	\sim \checkmark
EN61000-4-11:2004/A1:2017	Voltage Dips, Short Interruptions Immunity	\checkmark

Indicates that the test is applicable

Indicates that the test is not applicable

1.4 Test Methodology

All measurements contained in this report were conducted with CISPR 16-1: 2006, radio disturbance and immunity measuring apparatus, and CISPR16-2: 2002, Method of measurement of disturbances and immunity.

Report No.; TH19AR-142E

Page 5 of 32

EN 55015:2013 Report

1.5 Test Equipment List and Details

No.	Equipment	Manufactur er	Model No.	S/N	Calculator date	Calculator due date
K	EMI Test Receiver	R&S	ESCI	100687	2018-03-16	2019-03-15
2	EMI Test Receiver	R&S	ESPI	100097 🔊	2018-03-16	2019-03-15
3	Amplifier	HP	8447D	1937A0249 2	2018-03-16	2019-03-15
4	Single Power Conductor Module	FCC	FCC-LISN-5-50-1- 01-CISPR25	7101	2018-03-16	2019-03-15
5	Single Power Conductor Module	FCC	FCC-LISN-5-50-1- 01-CISPR25	7102	2018-03-16	2019-03-15
6	Power Clamp	SCHWARZ BECK	MDS-21	3812	2018-03-16	2019-03-15
7	Positioning Controller	C&C	CC-C-1F	MF780211 3	N/A	N/A
8	Electrostatic Discharge Simulator	TESEQ	NSG437	125	2018-03-16	2019-03-15
92	Fast Transient Burst Generator	SCHAFFNE R	MODULA6150	34572	2018-03-16	2019-03-15
10	Fast Transient Noise Simulator	NoiseAbby	FNS-105AX	31485	2018-03-16	2019-03-15
11	Color TV Pattern Genenator	PHILIPS	PM5418	TM209947	N/A	N/A
12	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8K	608002	2018-03-16	2019-03-15
13	Capacitive Coupling Clamp	TESEQ	CDN8014	25096	2018-03-16	2019-03-15
14	High Field Biconical Antenna	ELECTRO- METRICS	EM-6913	166	2018-03-16	2019-03-15
15	Log Periodic Antenna	ELECTRO- METRICS	EM-6950	811	2018-03-16	2019-03-15
16	Remote Active Vertical Antenna	ELECTRO- METRICS	EM-6892	304	2018-03-16	2019-03-15
17	TRILOG Broadband Test- Antenna	SCHWARZ BECK	VULB9163	9163-324	2018-03-16	2019-03-15
18	Horn Antenna	SCHWARZ BECK	BBHA9120A	B08000991 -0001	2018-03-16	2019-03-15
19	Teo Line Single Phase Module	SCHWARZ BECK	NSLK8128	D-69250	2018-03-16	2019-03-15
20	Electricity bridge	Zentech	100 LCR METER	803024	2018-03-16	2019-03-15
21	RF Current Probe	FCC	F-33-4	80	N/A	N/A
22	Signal Generator	HP	8647A	3349A0229 6	2018-03-16	2019-03-15
23	Microwave Amplifier	HP	8349B	2627A0099 4	2018-03-16	2019-03-15
24	Triple-Loop Antenna	EVERFINE	LLA-2	607004	2018-03-16	2019-03-15

Report No.; TH19AR-142E

Page 6 of 32

EN 55015:2013 Report

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

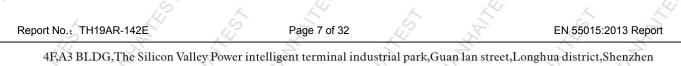
2.2 EUT Exercise Software

The EUT exercising program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software offered by manufacture, can let the EUT being normal operation.

2.3 Special Accessories

As shown in section 2.5, interface cable used for compliance testing is shielded as normally supplied by EUT and its respective support equipment manufacturers.

2.4 Equipment Modifications


The EUT tested was not modified by TH.

2.5 Configuration of Test System

EUT

2.6 Test Setup Diagram

1.0m

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

3 - DISTURBANCE VOLTAGE AT THE MAINS TERMINALS

3.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is 3.4 dB.

3.2 Limit of Disturbance Voltage At The Mains Terminals (Class B)

	Limits (dBuV)*			
Frequency Range (MHz)	Quasi-Peak	Average		
0.009~0.050**	110	L' A		
0.050~0.150**	90~80***	1 - 1		
0.150~0.500	66~56***	56~46***		
0.500~5.0	56	46		
5.0~30.0	60	50		

Remark: * At the transition frequency, the lower limit applies.

- ** The limit values in the frequency range 9kHz to 150 kHz are considered to be "provisional limit", which may be modified after some years of experience.
- *** The limit decreases linearly with the logarithm of the frequency in the ranges 50kHz to 150 kHz and 150kHz to 0.5MHz

3.3 EUT Setup

The setup of EUT is according with CISPR 16-1: 2006, CISPR16-2: 2002 measurement procedure. The specification used was the EN 55015 limits.

The EUT was placed center and the back edge of the test table.

The AV cables were draped along the test table and bundled to 30-40cm in the middle.

The spacing between the peripherals was 10 cm.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

3.4 Instruments Setup

The receiver was set with the following configurations:

Test Receiver Setting:

Frequency Range	9KHz to 30 MHz	14
Detector		X
IF Band Width	200Hz / 9KHz	X X
Frequency Range	9KHz to 150KHz / 150K	Hz to 30MHz

Report No.; TH19AR-142E

Page 8 of 32

EN 55015:2013 Report

3.5 Test Procedure

During the conducted emission test, the EUT power cord was connected to the auxiliary outlet of the first Artificial Mains.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance using all installation combination.

All data was recorded in the peak detection mode. Quasi-peak and Average readings were only performed when an emission was found to be marginal (within -10 dB μ V of specification limits). Quasi-peak readings are distinguished with a "**QP**". Average readings are distinguished with a "**AV**".

3.6 Summary of Test Results

According to the data in section 3.6, the EUT <u>complied with the EN 55015</u> Conducted margin, which represented worst margin reading.

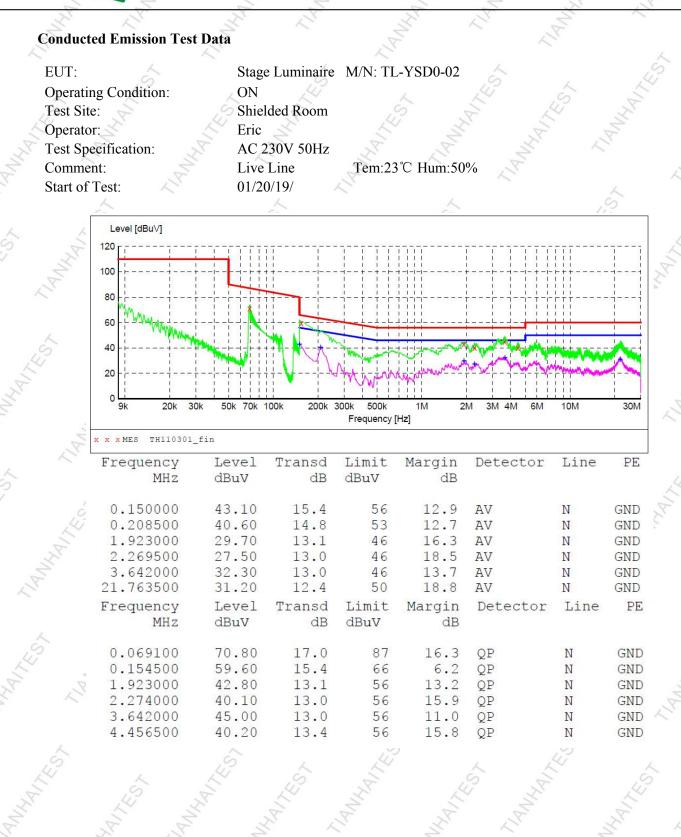
3.7 Disturbance Voltage Test Data

	. V		~		A.
Temperature (°C)	ý.		15~35	X	
Humidity (%RH)		6	30~60	S	
Barometric Pressure (mbar)	4	4	860~1060	1	Ś
EUT	5	4	Stage Luminaire	X	L
M/N	1	Ľ	TL-YSD0-02		6
Operating Mode	'K	R	ON		L'A

Test data see following pages

Remark: (1) When PK reading is less than relevant limit 20dB, the QP reading and AV reading will not be recorded.

(2) Where QP reading is less than relevant AV limit, the AV reading will not be measured

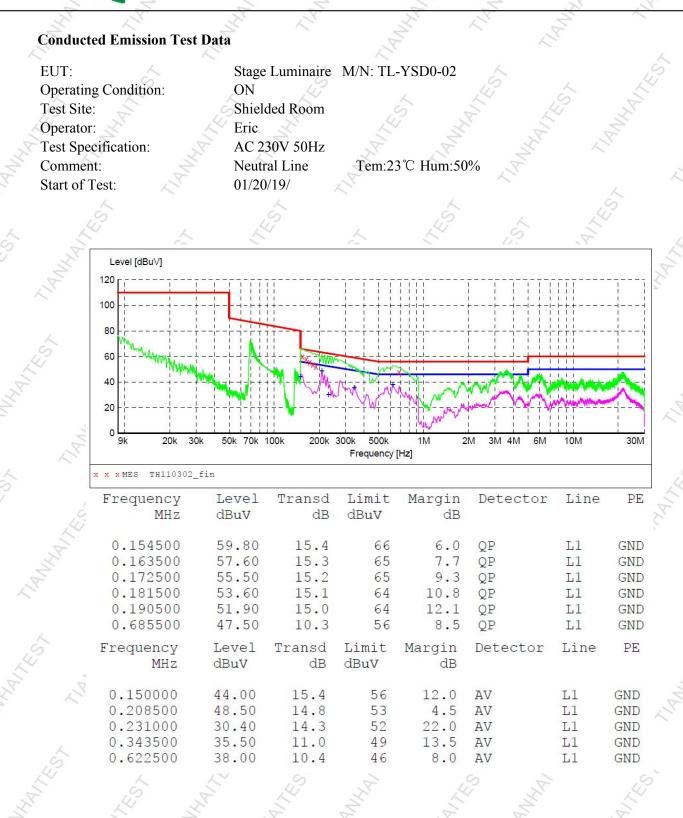

3.8 Test Result

Pass

Report No.; TH19AR-142E

Page 9 of 32

EN 55015:2013 Report


4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen

Report No.; TH19AR-142E

Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

Page 10 of 32

EN 55015:2013 Report

Report No.; TH19AR-142E

Page 11 of 32

EN 55015:2013 Report

4- RADIATED DISTURBANCES

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is 4.0 dB.

4.2 Limit of Radiated Disturbances (Class B)

	Frequency (MHz)	Distance (Meters)	Field Strengths Limits (dBµV/m)
0	30~230	3	40
	230 ~ 300	3	47

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

4.3 EUT Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup accordance with the CISPR 16-1: 2006, CISPR16-2: 2002. The specification used was EN61000-6-3 Class B limits.

The EUT was placed on the center of the test table.

Maximum emission emitted from EUT was determined by manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation and the levels in the final result of the test were recorded with the EUT running in the operating mode that maximum emission was emitted.

4.4 Test Receiver Setup

According to EN61000-6-3 rules, the frequency was investigated from 30 to 1000 MHz. During the radiated emission test, the test receiver was set with the following configurations:

Test Receiver Setting:

Detector	Peak & Quasi-Peak
IF Band Width	
Frequency Range	
Turntable Rotated	0 to 360 degrees
Antenna Position:	
Height	
Polarity	Horizontal and Vertical

Report No.; TH19AR-142E

Page 12 of 32

EN 55015:2013 Report

4.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -10 dB μ V of specification limits), and are distinguished with a "QP" in the data table.

4.6 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class A. The equation for margin calculation is as follows:

Margin = Class A Limit – Corr. Ampl.

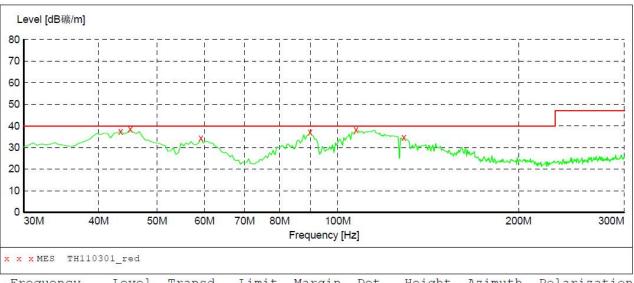
4.7 Radiated Disturbances Test Result

Temperature (°C)	E.	15~35	Z.	2
Humidity (%RH)	~	30~60	Z	
Barometric Pressure (mbar)		860~1060		4
EUT	~	Stage Luminaire		19
M/N	L.	TL-YSD0-02	A	17
Operating Mode	5	ON	H	X

Test data see following pages

4.8 Test Result

PASS


Report No.; TH19AR-142E

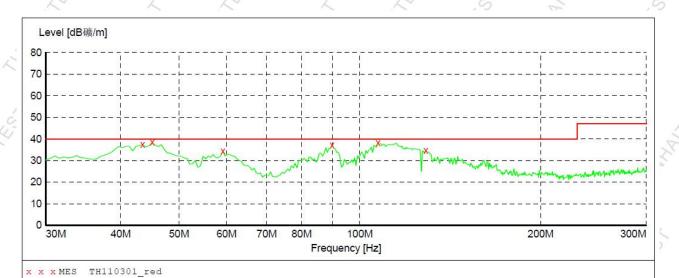
Page 13 of 32

EN 55015:2013 Report

Radiated Disturbances Test Data

	EUT:	Stage Luminaire M/N	J: TL-YSD0-02	
	Operating Condition:	ON		
	Test Site:	3m CHAMBER		
	Operator:	Eric		
1	Test Specification	AC 220V 50Hz		
	Comment:	Polarization: Horizontal	l Tem:23℃ Hum:50%	
	Start of Test:	01/20/19/		
	Co.	6	Co.	11:

	Frequency MHz	Level dB礦/m	Transd dB	Limit dB礦/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1	43.500000	37.40	15.8	40.0	2.6		100.0	0.00	VERTICAL
	45.120000	38.40	16.6	40.0	1.6		100.0	0.00	VERTICAL
	59.160000	34.30	15.7	40.0	5.7		100.0	0.00	VERTICAL
	89.940000	37.20	15.1	40.0	2.8		100.0	0.00	VERTICAL
	107.220000	38.20	12.2	40.0	1.8		100.0	0.00	VERTICAL
	128.820000	34.60	12.8	40.0	5.4		100.0	0.00	VERTICAL
	F.	11.	2 3	V	2 C	X			X


Report No.; TH19AR-142E

Page 14 of 32

EN 55015:2013 Report

Radiated Disturbances Test Data

	EUT:	Stage Luminaire M/N: 7	TL-YSD0-02
	Operating Condition:	ON	
	Test Site:	3m CHAMBER	
	Operator:	Eric	
1	Test Specification	AC 220V 50Hz	
	Comment:	Polarization: Vertical	Tem:23°C Hum:50%
	Start of Test:	01/20/19/	
	(a	()	()

14	X	14	Z		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	
Frequency		Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dB礦/m	dB	dB礦/m	dB		CM	deg	
40.800000	30.10	15.8	40.0	9.9		300.0	0.00	HORIZONTAL
46.740000	30.40	16.9	40.0	9.6		100.0	0.00	HORIZONTAL
60.780000	31.00	15.2	40.0	9.0		300.0	0.00	HORIZONTAL
89.940000	44.60	15.1	40.0	-4.6		300.0	0.00	HORIZONTAL
102.360000	43.30	11.7	40.0	-3.3		300.0	0.00	HORIZONTAL
143.400000	41.40	12.3	40.0	-1.4		300.0	0.00	HORIZONTAL
2	~	2		Y	7.		T	7

Report No.; TH19AR-142E

Page 15 of 32

EN 55015:2013 Report

5 - HARMONIC CURRENT TEST (EN 61000-3-2)

5.1 Application of Harmonic Current Emission

Compliance to these standards ensures that tested equipment will not generate harmonic currents at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

5.2 Measurement Data

Note: For detailed test data, refer to the following pages:

Standard used:	EN/IEC 61000-3-2 - Equipment class C
Observation time:	150s
E. U. T.:	Stage Luminaire
M/N	TL-YSD0-02
Operation Mode	ON
ES LO	
Test Result	
E. U. T.:	PASS

E. U. I	PASS	1
	(Wave form of the input current PASS)	A.
Power Source:	PASS	A

5.3 Test Results

Pass

Report No.; TH19AR-142E

Page 16 of 32

EN 55015:2013 Report

6 - VOLTAGE FLUCTUATIONS AND FLICKER TEST (EN 61000-3-3)

6.1 Application of Voltage Fluctuations and Flicker Test

Compliance to these standards ensures that tested equipment will not generate flickers and voltage change at levels that cause unacceptable degradation of the main environment. This directly contributes to meeting compatibility levels established in other EMC standards, which defines compatibility levels for low-frequency conducted disturbances in low-voltage supply systems.

6.2 Measurement Data

Note: For detailed test data, refer to the following pages:

Standard used:	EN/IEC 61000-3-3 Flicker
Short time (Pst):	10 min
Observation time:	10 min (1 Flicker measurement)
Flicker meter:	DC 24V
E. U. T.:	Stage Luminaire
M/N	TL-YSD0-02
Operation Mode	ON

Maximum Flicker results

5		EUT values	🥱 Limit 🔊	Result
Pst	N/L	0.030	1.00	PASS
dc [%]	Z	0.027	3.30	PASS
dmax [%]		0.045	4.00	PASS
dt [s]	5	0.000	0.50	PASS

6.3 Test Results

The EUT was subjected to the voltage fluctuations and flicker test required by EN 61000-3-3: 2013.

Report No.; TH19AR-142E

Page 17 of 32

EN 55015:2013 Report

7 – IMMUNITY MEASUREMENT INSTRUMENTATION

7.1 Electrostatic Discharge Test System

An EM TEST DITOC0103Z ESD simulator is used for all testing. It is capable of applying Electrostatic discharges in both contact discharge modes to 4 kV and air discharge modes to 8 kV in both positive and negative polarities. This is in accordance with the IEC 61000-4-2 basic EMC publication.

7.2 Radiated Susceptibility Test System

An IFR 2032 signal generator and a Amplifier Research power amplifier are used to provide a signal at the appropriate power and frequency to a transmitting antenna to obtain the required electromagnetic field at the position of the EUT in accordance with the IEC 61000-4-3 basic EMC publication. The field was monitored by Amplifier Research field probe and Amplifier Research PM2002 power meter according the IEC 61000-4-3 standards. In order to judge the performance of the EUT, a set of monitor system is used.

7.3 Electrical Fast Transient/Burst Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. It is capable of applying fast transients to the AC line at any phase angle with respect to the AC line voltage wave form and to attached cables via a capacitive coupling clamp in accordance with the IEC 61000-4-4 basic EMC publication.

7.4 Surge Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Both positive and negative polarities of voltage up to 2kV were applied to the AC input lines. The coupling network defined in the standard was used.

7.5 Conducted Susceptibility Test System

An IFR 2032A signal generator and a set of Amplifier Research test system are used for the testing. EUT was tested from 0.15 MHz to 80 MHz with 1kHz sine wave, 80% modulation with 3Vr.m.s. CDN coupling and decoupling networks and EM clamp was tested. During the tests, injected was applied to power line by using CDNs-6.2.2 method, and I/O lines was injected by using EM clamp injection-6.2.3.method.

7.6 Power Frequency Magnetic Field Immunity Test System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Test level as described in IEC 61000-4-8 titled "Table 1 – Test Levels for continuous field" was chosen. Single turn induction coil in $1m \times 1m$ size was used to generate the magnetic field.

7.7 Voltage Dips, Short Interruptions Immunity Tests System

An EM Test UCS 500-M6 Immunity test system is used for all testing. Test level as described in IEC 61000-4-11, section 5, titled "Test Levels".

Report No.; TH19AR-142E

Page 18 of 32

EN 55015:2013 Report

7.8 Equipment Test Table

IEC 61000-4-2: 1995 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.6 by 0.8-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

IEC 61000-4-3 and IEC 61000-4-4 specify that a tabletop EUT be placed on a non-conducting table 80 centimeters above a ground reference plane and that floor-mounted equipment shall be placed on an insulating support approximately 10 centimeters above a ground plane. During the IEC 61000-4-3 tests, the EUT is positioned on a table in a shielded semi-anechoic test chamber to reduce reflections from the internal surfaces of the chamber. During the IEC 61000-4-4 tests, the EUT is positioned on a table over a ground reference plane in conformance with this requirement.

7.9 Instrument Calibration

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications.

Extensive engineering efforts have been made to ensure test data reliability through Quality Control and regular equipment calibration schedules. However, the application of radio frequency fields and voltages are not without an unavoidable level of uncertainty. These include inaccuracies in antenna factors, chamber imperfections and possible test generator output uncertainties.

Report No.; TH19AR-142E

Page 19 of 32

EN 55015:2013 Report

8- IMMUNITY TEST PROCEDURES

8.1 EUT and Cable Placement

The EUT and any peripherals are located at the center of the table for tabletop devices and in the center of the ground plane with the insulating support for floor-standing devices. The standards require that interconnecting cables to be connected to available ports of the unit and that the placement of the unit and the attached cables simulate a typical installation so far as to be practical.

8.2 Application of Electrostatic Discharge Immunity Test

The test is conducted in the following order according to the basic standard IEC 61000-4-2: Air Discharge, Direct Contact Discharge, Indirect Contact Horizontal Coupling Plane Discharge, and Indirect Contact Vertical Coupling Plane Discharge. The Electrostatic Discharge test levels are set and discharges for the different test modes are set appropriately. The Electrostatic Discharge is applied to the conductive surface of the EUT, and along all seams and control surfaces on the EUT. When a discharge occurs and an error is caused, the type of error, discharge level and location is recorded.

8.3 Application of Radiated Susceptibility Test

The electromagnetic field is established at the front edge of the EUT. The frequency range is swept from 80 to 1000 MHz using a power level necessary to obtain a 3 volt/meter and 80% amplitude of a 1 kHz sine wave modulated field Strength is directed at the EUT. The test is performed with each of four sides of EUT facing the transmitting antenna. If an error is detected when the susceptible side of the EUT facing the transmitting antenna, the field is reduced until the error is not repeatable, the field is then manually increased until the error begins to occur. This threshold level, the frequency and the error created are noted before continuing. Both horizontal and vertical polarization of the antenna are set on test and measured individually

8.4 Application of Electrical Fast Transient/Burst Immunity Test

The EUT was arranged for Power Line Coupling and for I/O Line Coupling through a capacitive clamp, where applicable. (Note: The I/O coupling test using a capacitive clamp is performed on the I/O interface cables that are longer in length than 3 meters.) A metal ground plane 2.4 meter by 2.0 meter was placed between the floor and the table and is connected to the earth by a 2.0 meter ground rod. The ground rod is connected to the test facility's electrical earth.

8.5 Application of Surge Immunity Test

The EUT was setup as described in IEC 61000-4-5 and the test shall be performed according to the test plan.

8.6 Application of Conducted Susceptibility Test

The EUT was setup according to the IEC 61000-4-6 and the test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF input ports of the coupling devices are terminated by a 50 Ω load resistor. The frequency range is 150kHz to 80 MHz.

Report No.; TH19AR-142E

Page 20 of 32

EN 55015:2013 Report

8.7 Application of Power Frequency Magnetic Field Immunity Test

The EUT was setup according to the IEC 61000-4-8 and the test shall be done as the procedure described in the standard.

8.8 Application of Voltage Dips, Short Interruptions Immunity Tests

The EUT was setup according to the IEC 61000-4-11 and the test shall be done as the procedure described in the standard.

8.9 Deviations from the Standard

No deviations from EN 61547 were made when performing the tests described in this report.

Report No.; TH19AR-142E

Page 21 of 32

EN 55015:2013 Report

9 - TEST DATA

9.1 Electrostatic Discharge Immunity Test (IEC 61000-4-2)

K K K	14	K	24	5	2	
Temperature (°C)	X	2	15~35	2	Z	
Humidity (%RH)	Vr,	11	30~60	A	N.	
Barometric Pressure (mbar)	14	Z	860~1060	Z	K	
EUT	1	N	Stage Luminai	re		
M/N		2	TL-YSD0-02		K	0
Operating Mode	~		ON		S	
				1		

Table 1: Electrostatic Discharge Immunity (Air Discharge)

IE	C 61000-4-2					Test l	Levels				
1	Fest Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV
Shell	2 points	А	А	А	А	А	А	А	А	/	/

Table 2: Electrostatic Discharge Immunity (Direct Contact)

IEC 61000-4-2 Test Points		Test Levels								
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV
N/A	/	/	/	/	/	/	/	/	/	/

 Table 3: Electrostatic Discharge Immunity (Indirect Contact HCP)

IEC 61000-4-2		Test Levels									
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV	
Front Side	А	A	А	A	/	/	/	/	/	/	
Back Side	А	А	А	A	/	/	/	/	/	/	
Left Side	А	А	А	A	/	/	/	/	/	/	
Right Side	А	А	А	A	/	/	/	/	/	/	

 Table 4: Electrostatic Discharge Immunity (Indirect Contact VCP)

IEC 61000-4-2					Test l	Levels			- ¥	
Test Points	-2 kV	+2 kV	-4 kV	+4 kV	-6 kV	+6 kV	-8 kV	+8 kV	-15 kV	+15 kV
Front Side	А	А	А	А	/	/	/	/	/	/
Back Side	Α	А	А	А	/	/	/	/	/	/
Left Side	A	А	А	А	/	/	/	/	/	/
Right Side	A	А	А	А	/	/	/	/	/	/
		X		V.		1	V.		X	

Report No.; TH19AR-142E

Page 22 of 32

EN 55015:2013 Report

9.2 Radiated Susceptibility Test (IEC 61000-4-3)

Frequency Range (MHz): 80~1000MHz **Modulation:** Amplitude 80%, 1kHz sinewave **Severity Level:** 3V/m

S U	V.	11.	7	1 A	X	
Temperature (°C)	4	Ľ	15~35	A	A	
Humidity (%RH)	12	X	30~60	Z.	K	
Barometric Pressure (mbar)		N	860~1060	Z		2
EUT		1	Stage Lumina	ire	~	
M/N	~		TL-YSD0-0	2	5	
Operating Mode	G C	1	ON ON	6	L	
5	1	6	5	LT.	X	4

Frequency Range (MHz)	Front ((3 V/m)	Rear (3 V/m)	Left Side	e (3 V/m)	Right Sid	e (3 V/m)
80-1000	VERT	HORI	VERT	HORI	VERT	HORI	VERT	HORI
1400-2700	А	А	А	А	А	А	А	А

9.3 Electrical Fast Transient/Burst Immunity Test (IEC 61000-4-4)

	2 2 X	V.	
Temperature (°C)	3 3 3 1:	5~35	Z
Humidity (%RH)	30	0~60	
Barometric Pressure (mbar)	860)~1060	
EUT	Stage I	Luminaire	1
M/N	TL-Y	YSD0-02	1
Operating Mode	A A	ON	X

IEC 6100	0-4-4	Test Levels (kV)							
Test Points		+0.5	-0.5	+1.0	-1.0	+2.0	-2.0	+4.0	-4.0
4	LI	А	А	А	А	/	/	/	/
S	L2	А	А	Α	А	/	/	/	/
Power Supply	Earth	А	А	А	А	/	/	/	/
TH I	L1+L2	А	А	А	А	/	/	/	/
Power Line of EUT	L1 + Earth	А	А	А	А	/	/	/	/
12M	L2 + Earth	А	А	А	А	/	/	/	/
~	L1+L2+Earth	А	А	А	А	/	/	/	/

47

EN 55015:2013 Report

Report No.; TH19AR-142E

Page 23 of 32

9.4 Surge Immunity Test (IEC 61000-4-5)

Temperature (°C)	15~35	S
Humidity (%RH)	30~60	12
Barometric Pressure (mbar)	860~1060	Z
EUT	Stage Luminaire	J.
M/N	TL-YSD0-02	12
Operating Mode	ON S	7

Table 1: Surge Power Supply

,95			, S)		
Level	Voltage	Poll	Path	Pass	Fail
21	0.5kV		L-N	А	/
2	lkV	+	L-N	А	/
3	2kV	±	L-PE, N-PE	А	/
4	4kV	+	L-N, L-PE, N-PE	/	/

9.5 Conducted Susceptibility Test (IEC 61000-4-6)

Frequency Range (MHz): 0.15~80MHz **Modulation:** Amplitude 80%, 1kHz sinewave

Severity Level: 3Vr.m.s.

21 22 2		V
Temperature (°C)	15~35	5
Humidity (%RH)	30~60)
Barometric Pressure (mbar)	860~10	60
EUT	Stage Lum	inaire
M/N	TL-YSD	0-02
Operating Mode	ON	F. F.
77 Y. Y.		

VK.	Level	Voltage Level (e.m.f.) U ₀	Pass	Fail
	1 1	1 4	/	/
A	2	3 4	А	/
0	3	2 10 ×	/	/
	x	Special	/	/

9.6 Power Frequency Magnetic Field Immunity Test (IEC 61000-4-8)

Temperature (°C)	15~35
Humidity (%RH)	30~60
Barometric Pressure (mbar)	860~1060
EUT	Stage Luminaire
M/N	TL-YSD0-02
Operating Mode	ON Z

Report No.; TH19AR-142E

Page 24 of 32

EN 55015:2013 Report

	Level	Magnetic Field St	rength A/M	X (Horizontal)	Y (Vertical)	Z (Special)
	1	人 1	2	< / I	K	1 5
~	2	J 3,	L	А	A	S A S
0	3	10	Y	1.5	RI A	
	4 🖉	30	N	I.	X I X	F
	5	100	Z	ST I	1 1 2	~ /
	Х	Specia	l	21	12	1

9.7 Voltage Dips, Short Interruptions Immunity Tests (IEC 61000-4-11)

A S	12			Z'	4
Temperature (°C)		Z.	15~35	Vb	A
Humidity (%RH)	2	A'	30~60	2	Vh.
Barometric Pressure (mbar)	4	Ζ.	860~1060		A,
EUT	N. S.	S	tage Luminaire	1	>
M/N		A	TL-YSD0-02	S	
Operating Mode		4	ON	K	K
A		A			1.201

Level	U2	td	Phase Angle	Ν	Pass	Fail
14Y	100	10ms	N/A	3	В	/
~ 2	30%	200ms	N/A	3	С	/

Note:

A ----- Performance Criteria A as stated in Section 1.2 of this report B ----- Performance Criteria B as stated in Section 1.2 of this report C ----- Performance Criteria C as stated in Section 1.2 of this report

Report No.; TH19AR-142E

Page 25 of 32

EN 55015:2013 Report

10 - TEST RESULTS

The following tests were performed on the EUT product; the actual test results are contained within the Test Data section of this report.

10.1 IEC 61000-4-2 Electrostatic Discharge Immunity Test Configuration

The EUT was subjected to the electrostatic discharge tests required by EN 61547 and all lower levels specified in IEC 61000-4-2.

The EUT continued to perform as intended during and after the application of the ESD.

10.2 IEC 61000-4-3 Radiated Susceptibility Test Configuration

The EUT was subjected to a 3-volt/meter, 80% Amplitude, 1 kHz Sine wave field as required by EN 61547 and all lower levels specified in IEC 61000-4-3.

The EUT continued to perform as intended during and after the application of the electromagnetic field.

10.3 IEC 61000-4-4 Electrical Fast Transient/Burst Immunity Test Configuration

The EUT was subjected to the electrical fast transient tests required by EN 61547 and all lower levels specified in IEC 61000-4-4.

The EUT continued to perform as intended during and after the application of the EFT/B.

10.4 IEC 61000-4-5 Surge Immunity Test Configuration

The EUT was subjected to the Surge Immunity tests required by EN 61547 and all lower levels specified in IEC 61000-4-5.

The EUT continued to perform as intended during and after the application of the Surge Immunity Test.

10.5 IEC 61000-4-6 Conducted Susceptibility Test Configuration

The EUT was subjected to the Conducted Susceptibility tests required by EN 61547 and all lower levels specified in IEC 61000-4-6.

The EUT continued to perform as intended during and after the application of the Conducted Susceptibility Test.

10.6 IEC 61000-4-8 Frequency Magnetic Field Immunity Test Configuration

The EUT was subjected to the Frequency Magnetic Field Immunity tests required by EN 61547 and all lower levels specified in IEC 61000-4-8.

The EUT continued to perform as intended during and after the application of the Frequency Magnetic Field Immunity Test.

Report No.; TH19AR-142E

Page 26 of 32

EN 55015:2013 Report

10.7 IEC 61000-4-11 Voltage Dips, Short Interruptions Immunity Tests Configuration

The EUT was subjected to the Voltage Dips/Interruptions tests required by EN 61547 and all lower levels specified in IEC 61000-4-11.

The EUT continued to perform as intended during and after the application of the Voltage Dips/Interruptions Test.

Report No.; TH19AR-142E

Page 27 of 32

EN 55015:2013 Report

APPENDIX A - PRODUCT LABELING

CE Marking Label Specification

Specification: Text is Black or white in color and is left justified. Labels are printed in indelible ink on permanent adhesive backing and shall be affixed at a conspicuous location on the EUT or silk-screened onto the EUT.

Proposed Label Location on EUT

CE

EUT Rear View/Proposed CE Marking Location

Report No.; TH19AR-142E

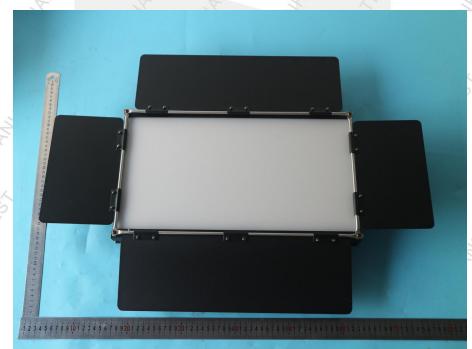
Page 28 of 32

EN 55015:2013 Report

4F,A3 BLDG,The Silicon Valley Power intelligent terminal industrial park,Guan lan street,Longhua district,Shenzhen Tel:+86-755-86615100 Fax:+86-755-86615105 http://www.tianhaitest.com

1 2 3 4 5 6 7 8 9 30 1 2 3 4 5 6 7 8 9 40 1 2 3 4 5

APPENDIX B - EUT PHOTOGRAPHS



Report No.; TH19AR-142E

Page 29 of 32

EN 55015:2013 Report

Report No.; TH19AR-142E

Page 30 of 32

EN 55015:2013 Report

APPENDIX C - TEST SETUP PHOTOGRAPHS

****************END OF THE REPORT***********

Report No.; TH19AR-142E

Page 32 of 32

EN 55015:2013 Report